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Abstract
The probability current statistics of two-dimensional open chaotic ballistic
billiards is studied both analytically and numerically. Assuming that the real and
imaginary parts of the scattering wave function are both random Gaussian fields,
we find a universal distribution function for the interior probability current. As
a by-product we recover previous analytic forms for wave function statistics.
The expressions bridge the entire region from GOE to GUE type statistics. Our
analytic expressions are verified numerically by explicit quantum mechanical
calculations of transport through a Bunimovich billiard.

PACS numbers: 05.45.Mt, 05.60.Gg, 73.23.Ad

1. Introduction

For a quantum chaotic closed system it is well known that the statistical properties of the
energy levels are described by random matrix theory (RMT) [1]. They follow the Gaussian
orthogonal ensemble (GOE) and the Gaussian unitary ensemble (GUE), depending on whether
time-reversal symmetry (TRS) of a system is preserved or not. In the same way the wave
function statistics obeys different laws in the two cases. Let the scaled local density be
ρ(r) = A|ψ(r)|2 whereψ(r) is the normalized wave function andA is the area (volume) of the
system. As prescribed by GOE the probability distribution is the well known Porter–Thomas
(PT) distribution P(ρ) = (

1/
√

2πρ
)

exp(−ρ/2) when TRS is present (the Hamiltonian H

is invariant under time reversal T̂ (t → −t) and ψ may be chosen real). On the other hand,
the distribution takes the exponential Rayleigh form P(ρ) = exp(−ρ) as described by GUE
when TRS is broken (H is not invariant with respect to T̂ and ψ must be complex). It is easy
to understand qualitatively why the statistics are so different in the two cases; for example,
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why small values of ρ have a much larger weight in GOE than in GUE. In the first case the
real wave function vanishes along nodal lines in two-dimensional (2D) systems (surfaces in
3D). On the other hand, ψ is complex in the second case and vanishes only at nodal points
(lines in 3D) resulting in less probability for small ρ. Depending on the relative weights of
the orthogonal real and imaginary parts of ψ one can also define intermediate statistics that
applies to the entire crossover region from GOE to GUE [2, 3].

We now consider what happens when the system is made open, for example, by attaching
electron leads to some exterior reservoirs and a stationary current through the system is induced
by applying suitable voltages to the reservoirs. The additional flexibility gained in this way
leads to a number of interesting cases for the wave function statistics. Let us first look at the
case when there is no current flow. The statistics will then be the same as for the closed system
above; i.e., the kind of statistics simply depends on whether the Hamiltonian is invariant under
T̂ or not. On the other hand, if there is a stationary current via the leads we have to deal with
a scattering wave function. This function, which must be complex, is written in 2D as

ψ(x, y) = u(x, y) + iv(x, y). (1)

and satisfies (∇2 + k2)ψ = 0. Even if the Hamiltonian itself is invariant under T̂ , the statistics
will not follow GOE since the scattering wave function is complex. Because of the boundary
conditions associated with the scattering wave function, it is no longer an eigenstate of the usual
time-reversal operator ĈT̂ where Ĉ is complex conjugation ofψ(r). We will show how the two
Gaussian random fields u and v are identified to recover the intermediate statistics discussed
above and how a universal distribution for the probability current density can be found. We
will also compare theory with explicit numerical calculations for an open Bunimovich stadium.

2. Theory

In the following derivation of the wave function and probability current statistics we assume
that the real and imaginary parts of ψ can be viewed as two independent isotropic Gaussian
fields. An explict example of such a state is given in [4] in the form of a Berry-type wave-
chaotic function. In general, the assumption of independent fields can only make sense if
we first extract a common phase factor. This feature will turn out to be most useful. Let us
introduce the notation

〈u2〉 = σ 2
u 〈v2〉 = σ 2

v 〈uv〉 = γ (2)

σ 2 = σ 2
u + σ 2

v = 〈|ψ |2〉 〈u〉 = 0 〈v〉 = 0. (3)

We define the averages as

〈...〉 = 1

A

∫
A

d2r ... (4)

where A is the area to be sampled. In our case it will be area of the cavity, but in principle it
could be any area that one may wish to specify. In what follows we assume that wave function
ψ(r) is normalized:∫

A

d2r |ψ(r)|2 = 1 (5)

and therefore σ 2A = 1. To bring ψ to a ‘diagonal’ form in which the real and imaginary
parts are independent Gaussian fields we introduce the new functions p(x, y) and q(x, y) by
changing the phase as

ψ(x, y) → e−iαψ(x, y) = p(x, y) + iq(x, y). (6)
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The condition 〈pq〉 = 0 now allows us to determine α. By this step we are also able to find
analytic expressions for the wave function and probability current statistics. Straightforward
algebra gives

tan 2α = 2γ

σ 2
u − σ 2

v

〈p2〉 = 1
2

[
σ 2 +

√
σ 4 − 4(σ 2

u σ
2
v − γ 2)

]

〈q2〉 = 1
2

[
σ 2 −

√
σ 4 − 4(σ 2

u σ
2
v − γ 2)

]
.

(7)

Next let us consider the cumulative distribution G(ρ) for the scaled density ρ(r) = A|ψ(r)|2:

G(ρ) =
∫
C(ρ)

f (p, q) dp dq. (8)

The integration is defined by the circle C(ρ) in the (p, q)-plane centred at the origin and with
radius

√
ρ(r); i.e., (p2 + q2)/σ 2 � ρ(r) in the integral above. The function f (p, q) is the

joint distribution for the random Gaussian fields p and q:

f (p, q) = 1

2π
√

〈p2〉〈q2〉
exp

[
−1

2
(
p2

〈p2〉 +
q2

〈q2〉 )
]
. (9)

After integration of equation (8) we obtain

G(ρ) = 1

2π

∫ 2π

0

1 − exp[−ρµ(µ + ν cos θ)]

µ + ν cos θ
dθ (10)

where we have introduced the following notation:

µ = 1

2

(
1

ε
+ ε

)
ν = 1

2

(
1

ε
− ε

)
ε =

√
〈q2〉
〈p2〉 . (11)

Differentiating (10) with respect to ρ we find the final expression for the density distribution

P(ρ, ε) = µ exp(−µ2ρ)I0(µνρ) (12)

where I0(z) is the modified Bessel function of zeroth order.
The distribution in equation (12) coincides with the results obtained from RMT for closed

systems [2, 3] and is therefore not new. For weakly open systems with point contacts Šeba
et al [5] have related the statistical properties of the scattering matrix elements with the
distribution P(ρ) and have obtained the expression above. A derivation analogous to ours
is also found in [4]. Our way of deriving equation (12), however, explicitly shows how to
identify the two independent random fields in a given wave function. For the random wave
function in equation (6) the limits 〈q2〉 → 0, ε → 0 correspond to a time-reversed symmetric
closed system and as a consequence one recovers the PT distribution and GOE statistics. On the
other hand, the case 〈p2〉 → 〈q2〉, ε → 1 corresponds in this context to an open system through
which there is a current flow. Consequently one finds the exponential Rayleigh distribution
that corresponds to the GUE statistics. We have recently verified this type of crossover in wave
function statistics for a Bunimovich stadium using numerical scattering methods [6]. In the
crossover region the value of ε is obtained numerically using equations (2), (3), (7) and (11);
i.e., ε is not merely a fitting parameter. This procedure also removes any ambiguities in α that
might be present in computed or measured data.

In view of all of the previous work on the generic form of wave function statistics in
chaotic systems it is surprising that no attention has been paid to the corresponding current
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distributions, except [4] which relates the average of the squared current to 〈ρ〉. Since currents
may be measured [7–9] it is of interest to establish a form also for currents. Below we will
show how to find a useful form that is both simple and universal. Let us limit ourselves to the
case of a weak net current between narrow input and output leads. Inside the cavity, however,
there will be a rich, whirling flow pattern, which is strongly influenced by the vortical motions
around the nodal points associated with the complex form of the wave function. Hence the net
current through the billiard turns out to be only a tiny fraction of the total internal flow, and
particularly so for asymmetric arrangements of leads and wavelengths that are small compared
to the dimensions of the cavity. As a result, the corresponding distributions may to a good
approximation be chosen to be isotropic. Hence the components of the current effectively
average to zero. These assumptions are verified by the numerical calculations to be discussed
in the next section.

Our complex wave function (1) carries the probability current density (h̄ = m = 1)

j = Im(ψ∗∇ψ) = p∇q − q∇p. (13)

To find the corresponding distribution it is convenient to begin with a characteristic function
for the components of the probability current density

#(a) = 〈exp[ia · j]〉 = 〈exp[i(pa · ∇q − qa · ∇p)]〉. (14)

Since 〈p∇q〉 = 〈q∇p〉 = 0 for isotropic fields ∇p and ∇q are statistically independent of p
and q. They have the same distribution as in equation (9) with dispersions 〈(∇p)2〉 = k2〈p2〉
and 〈(∇q)2〉 = k2〈q2〉 which follows from the Schrödinger equation. Using the relation
〈(a∇p)2〉 = a2k2〈p2〉/2 and similarly for ∇q, we obtain

#(a) = 1

1 + τ 2 a2
(15)

where a = |a| and

τ 2 = k2〈p2〉〈q2〉/2. (16)

From equation (15) it is now easy to calculate the distribution functions. For the components
we have

P(jx) =
〈
δ

(
jx − p

∂q

∂x
+ q

∂p

∂x

)〉

= 1

2π

∫ ∞

−∞
#(|ax |) exp(−iaxjx) dax

= 1

2τ
exp(−|jx |/τ)

and the same for P(jy). In order to derive the distribution function for the absolute value of
the probability current density let us consider the joint distribution function

P(jx, jy) = 1

2π

∫ ∞

0
a J0(aj)#(a) da

= 1

2πτ 2
K0

(
j

τ

)
(17)

where j = |j| and K0(z) is the modified Bessel function of the second kind. Since this
expression is radially symmetric one can find the probability density function P(j) for j by
just multiplying equation (17) with a factor of 2πj . This gives us the final expression

P(j) = j

τ 2
K0

(
j

τ

)
. (18)



Letter to the Editor L91

T

k d / π

A

0

1

1.87 1.88 1.89 1.90 1.91 1.92

T

k d / π

B

0

1

4.63 4.64 4.65 4.66 4.67 4.68

Figure 1. Transmission probability T as a function of Fermi wave number k for the open stadium
billiard: (A) a low energy case with one open channel in the leads (n = 1), (B) a high energy case
with n = 4. The inset shows the hard-wall Bunimovich stadium and the positions of the leads.

3. Numerical results

As a numerical verification of the analytic expressions for the probability current distribution,
we consider an open 2D Bunimovich hard-wall stadium (see inset in figure 1). It is characterized
by the radius of a semicircle a and the half-length of a straight section l, and coupled to a pair
of leads with a common width d . Here we choose (a = l) and (d/

√
A = 0.0935) for

which the billiard is maximally chaotic and weakly open, respectively. To find the scattering
wave function for particles entering and leaving the cavity via the leads, we solve the time-
independent Schrödinger equation for ψ under Dirichlet boundary conditions using a plane-
wave-expansion method [10], which gives reflection and transmission amplitudes for a given
energy. The wave functions are used to compute the different parameters entering the statistics
using the explicit expressions stated above.

Figure 1 shows the transmission probability T as a function of wave number k for an
incoming wave with transverse mode n in the leads. There is a sequence of overlapping
resonances which become broader in the high energy region shown in the right-hand section
of figure 1.

For the statistical analysis of the scattering wave functions we select two typical cases:
(A) a low energy with only one fully open channel (n = 1) for which T reaches unity; (B) a
high energy with n = 4 and an intermediate value for T . For the statistics the spatial average
is taken over the billiard region corresponding to the closed stadium. For convenience this
area is set equal to unity.

Figure 2 shows the numerical results forP(j),P(jx) andP(jy) together with the analytical
predictions in equations (17) and (18). In case (A) there is almost no reflection and hence the
system is completely coupled to the open channel. The current statistics shows, however, that
ε = 0.32; i.e., intermediate between closed and fully open cases. Nevertheless, the numerical
results show good agreement with the theory.

Also in the high energy region (B) in figure 1 the probability current distributions are well
described by the theory as shown in figure 3. Here ε = 0.86 which is close to the exponential
Rayleigh (GUE) case ε = 1. The transmission is, however, lower than in the previous example.
Our numerical results suggest that there is no simple relation between T and ε.
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Figure 2. Distribution of probability current density
P(j) (top) and its components P(jx) and P(jy) (middle
and bottom) in the open stadium billiard for case (A) in
figure 1. Solid curves show the analytical predictions for
ε = 0.32. (For convenience h̄ = 1,m = 1.)

Figure 3. Same as in figure 2 but for the case (B) for
which ε = 0.86.

4. Concluding remarks

We have derived the statistical distributions for wave functions, probability current densities and
corresponding components for 2D open quantum systems with classically chaotic dynamics.
The expressions for the probability currents are universal in the sense that the shape of the
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distributions is independent of the mixing parameter ε; i.e., only the width changes with ε.
This is in contrast to the wave function statistics that transforms gradually from GOE to GUE
type with increasing ε. Obviously these ideas carry over into 3D.

The statistics for mesoscopic transport through a chaotic open billiard was also studied
numerically with sufficient statistical resolution to compare with the analytical predictions.
The results give a numerical verification of the predictions for the probability current density
developed here. It also appears that experimental verifications are possible. For example,
images of the coherent electron flow through a quantum point contact have been observed in
recent experiments [7, 8]. There is also the case of thin microwave resonators [1, 9, 11] where
the present theory might be applied to the Poynting vector.
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